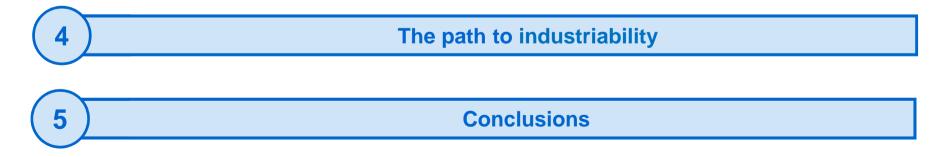


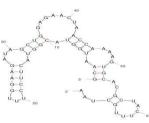
Aptamers: Powerful and Innovative Ligands in Affinity Chromatography

Gérald Perret Head of Innovative Bioprocess LFB Biotechnologies Technical Innovation Department



Aptamers as affinity ligands: definition, selection and general properties

Selection of an Aptamer designed for affinity chromatography application



1

2

- Aptamer from « Aptus » (from the Latin *aptus* fit, and Greek meros region)
- Oligonucleotides (RNA or single-strand DNA) selected to bind a target [biological macromolecules (e.g. proteins) or little organic molecules]
- Specific 3D structures which allow aptamers to display high affinity and specificity for their targets
 - First time reported in 1990: two publications^{1,2} in Nature and Science
 - First selection against non nucleic acid binding protein in 1992: Thrombin³
 - In vitro Selection process inspired from natural selection : The SELEX
 - This process enables the isolation, from a highly diverse combinatorial library of oligonucleotides, of the best binder(s) under a given set of conditions

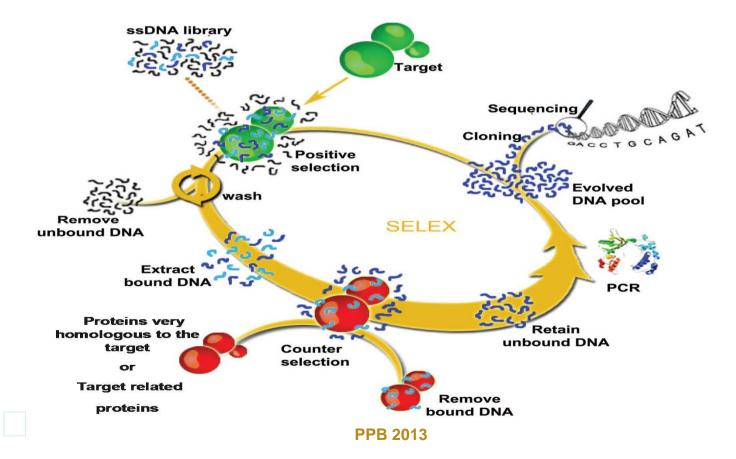
1: Nature. 1990 Aug 30;346(6287):818-22. In vitro selection of RNA molecules that bind specific ligands. Ellington AD, Szostak JW

2: Science: 1990 Aug 3;249(4968):505-10. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Tuerk C, Gold L.

3: Nature. 1992 Feb 6;355(6360):564-6. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ.

The SELEX: Systematic Evolution of Ligand by Exponential enrichment

The combinatorial Library


ATGCCGCCCGATCGTCGG	N 40	GATCGGCCTAATCGATCG
Fixed region 1 18 nucleotides	Randomized region 20-40 nucleotides	Fixed region 2 18 nucleotides
Forward primer	sequence dependent folding	Reverse primer
Cloning zone	Support of functionality	Cloning zone

- Single stranded DNA chemically synthesized
- Central randomized region of 20-40nt
 - $\rightarrow\,$ Huge diversity : 10^{15} to 10^{16} of different molecules
 - $\rightarrow~2000$ pmols of a 40nt library $~\cong~47~\mu g~ssDNA \Rightarrow 1.2x~10^{15}$ unique sequences
- Flanked by fixed region (for PCR amplification and cloning)

The SELEX : Systematic Evolution of Ligand by Exponential enrichment

Iterative process of <u>selection</u>/ <u>counter-selection</u> /<u>amplification</u> of the more fitting species followed by an <u>identification step</u>:

G.Perret

Number of cycles needed for an efficient evolution of the library: 6 to 16

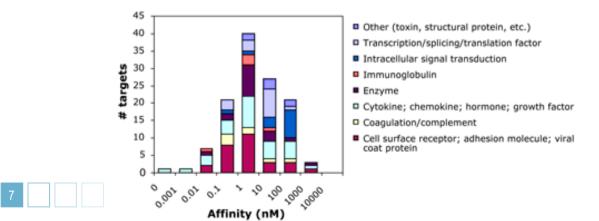
- Stopped when the enrichment or the affinity of the pool is deemed sufficient enough
- One SELEX leads to many specific candidates

Sequencing performed on the evolved Aptamer pool allows

- Identification of repeated consensus sequences
- Characterization of the secondary structures and identification of the minimal core-sequence needed for binding

Minimal size of the core-sequence: 10 to 60 nt

15 nt anti-thrombin aptamer: GGTTGGTGTGGTTGG
(Kd: 200nM)



Aptamers: global view

General properties

- Binds the target: Kd pM to µM
- Possibly, Inhibits the biological activity of the target
- 4000+ Aptamer sequences 370 sequences of artificial Ribozymes referenced in 500 publications and patents (DataBase : Aptamer.freebase or RiboaptDB)
- 2000+ publications on Aptamers and/or SELEX

Some examples of target/Kd

Target	Kd
VEGF	2 nM
Adenine	8 µM
C5	2-5 nM
B12 (vitamin)	500 nM
HIV-RT	25 pM
PrPsc	40 nM
PrPc	20 nM

Aptamers : main features

- Generation of aptamers against non immunogenic, or difficult to handle targets (Prion, toxin, small molecules)
- Quick *in vitro* process: Generation in ~ <u>8 weeks against virtually any target</u>
 - Less for optimized /automatized process
- Their chemical nature (5'P-3'OH) allows for precise derivatization (biotin, fluorescent reporter, spacer arm, etc.)
- Owing to their small size: anti-protein aptamers can access/contact relatively small binding pockets on their targets
 - Powerful inhibitors
- High specificity :
 - An Aptamer exhibits greater than 10,000-fold binding affinity for theophylline over caffeine
- Can be selected under a wide range of conditions
 - Select species that bind under non physiological conditions (pH, ionic strength, solvent, temperature)
 - Binding under precise conditions to meet a specific need (process, type of sample)

Affinity ligand Ideal attributes ?

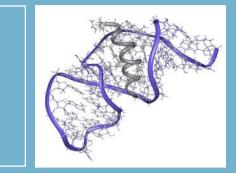
- Dedicated grafting function to allow oriented immobilization
- Capable to exclusively recognize the target protein
- Possibility to easily release the captured proteins by a chosen condition suitable for the product
- Reusable and stable under quite harsh conditions
- Neither leakage nor molecular hydrolysis
- Molecular mass as small as possible
- Non-toxic
- easy synthesis and affordable cost

Aptamer as ligand for affinity chromatography : Ideal ligand ?

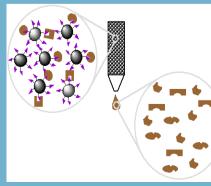
- High specificity and selectivity
 - Generally considered to be superior to antibody-derived ligands
- High physical and chemical stability: reusable and resistant to harsh sanitization
 - High physical and chemical stability of DNA chemistry
 - Modified nucleotides provide nuclease resistance
 - Behavior which may perfectly fit specific process requirements
 - Behavior chosen and modulated during the SELEX process
 - Elution under optimal conditions for the product or considering the process constraints (modality of selection)
 - Improvement selectivity through counter-selection
 - Particular interest for transgenic proteins: counter-selection against undesirable endogenous proteins

Aptamer as ligand for affinity chromatography : Ideal ligand ?

Manufacturing cost: large scale production by chemical synthesis


- High reproducibility and moderate cost: 2 to 5 K€ per gram of Aptamer with spacer and terminally-modified nucleotide (MW = 1/10 to 1/50 of Mab)
- No potential biological contamination

Availability of highly sensitive assays when considering aptamers as leachables: Molecular biology methods

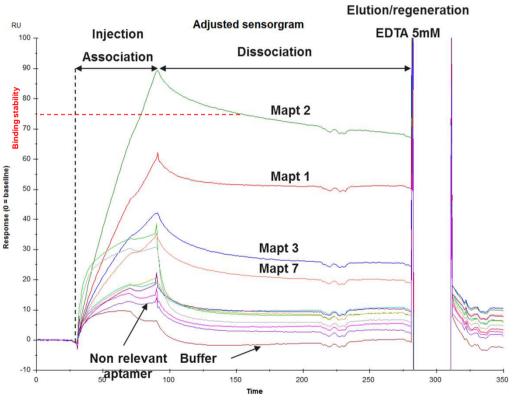

- Lack of immunogenicity (in case of leakage)
 - Lack of immunogenicity demonstrated during pre-clinical tests for therapeutic Aptamers when 1,000-fold higher doses were administered to monkeys (by Eyetec for anti-VEGF165).

Selection of an Aptamer designed for affinity chromatography applications

Selection of an Aptamer designed for affinity chromatography applications <u>Case of human Recombinant FVIIa</u>

	SELEX strategy	
Selection buffer	Tris 50mM / NaCl 50mM / CaCl2	
	10mM / MgCl2 4mM	
	pH = 7.5	
Target	Alternatively : R FVIIa / plasmatic derived FVIIa	
Counter-selections	Support : Nitrocellulose filter	
	Recombinant rabbit FVII (85% homology)	
Wash / Elution	NaCI 2M /EDTA 10mM	

➔ Cloning and sequencing

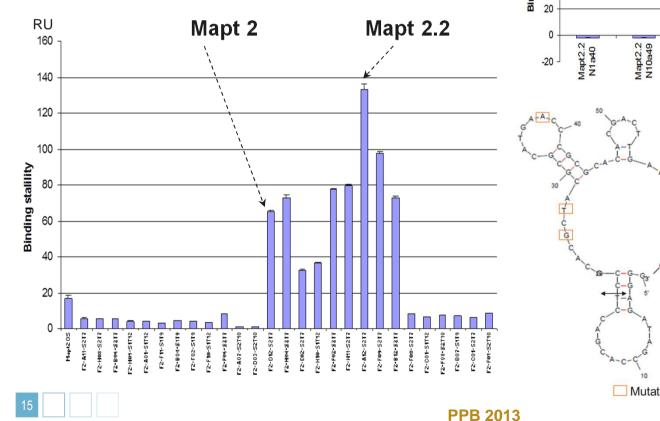


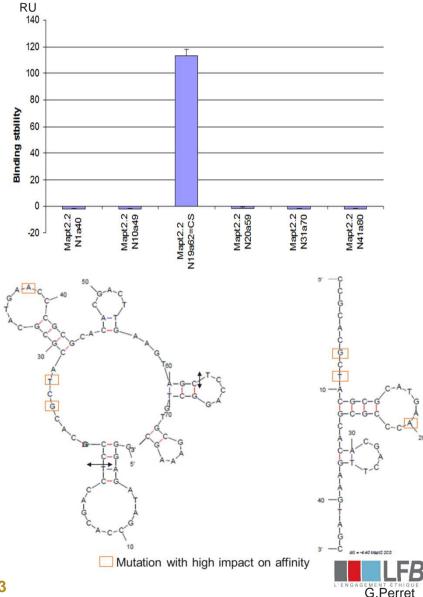
Selection of an Aptamer designed for affinity chromatography applications <u>Case of human Recombinant FVIIa</u>

Bioinformatics and SPR analysis (Biacore) for confirmation of Monoclonal Aptamer (Mapt) sequences

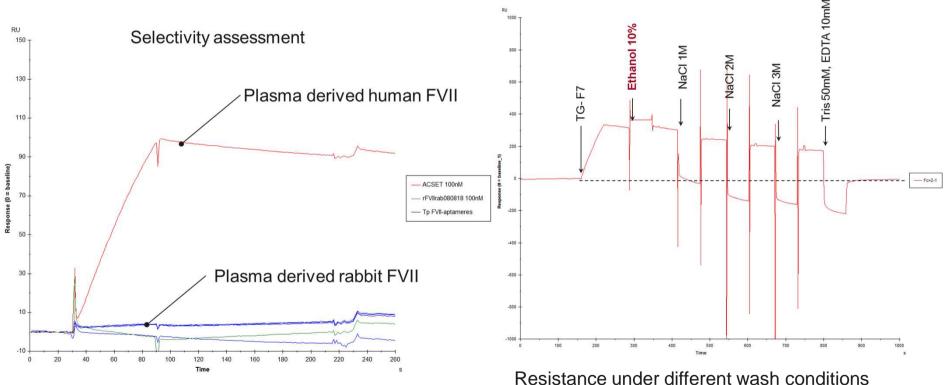
	10	20	30	40	50
F10-S2T7	TAAG	CCGCTGCGTA	TTATAGCTGA	ATGCCCC-	TAATGGGAAG TG
F12-S2T7					
G11-S2T7				A	C
E03-S2T10	C			A	
E09-S2T10	C			C	
A03-S2T7	CC		.C	A	
E01-S2T7	C		A	A	
E08-S2T10	<mark>C</mark> .			TT	T
G09-S2T10	C			TT	T
H07-S2T10		G	.C	TT	CT
B08-S2T10	<mark>C</mark>	T		TT	CT
G5-S2T7	C			A	.CTT
E10-S2T10	GTGCAGCC	A.TN	AGTG	TAAGA	.G.G
A9-S2T10	ATGC	AGCC.	G.GAG	AGAA	.GG.C-T
B01-S2T10	CC	.A.AGCC.	G.T.CAG	AGAT.A	.GG.C-T
Clustal Co	*		***	*** *	

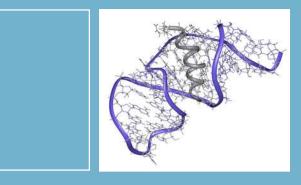
Bioinformatics alignment for family identification


Affinity confirmation against immobilized target : R FVIIa

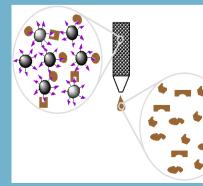


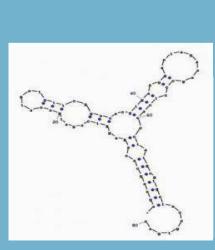
Selection of an Aptamer designed for affinity chromatography applications <u>Case of human Recombinant FVIIa</u>


SPR analysis for best binder determination in a aptamer family followed by core sequence identification

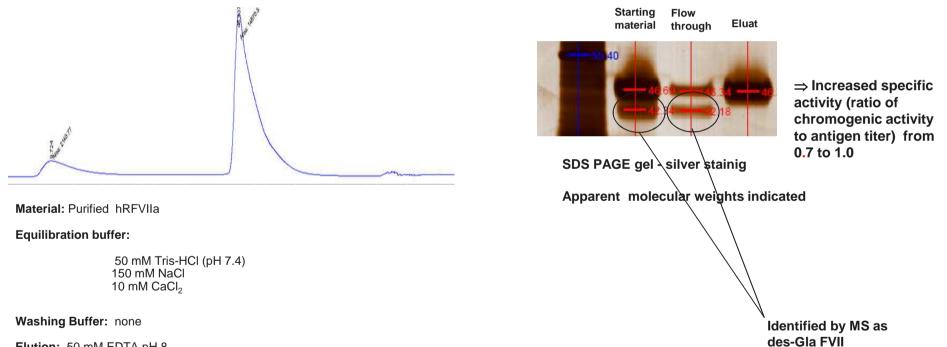

Selection of an Aptamer designed for affinity chromatography application <u>Case of human Recombinant FVIIa</u>

Selectivity assessment and analyses of their binding properties




evaluation with immobilized aptamer

Examples of Aptamo-purification



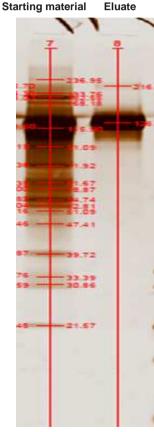
Aptamo-purification as a polishing step Example of Recombinant FVIIa

From highly purified material

Purified recombinant FVIIa from slightly stressed raw materiel containing 10% of product-related impurities (other impurities less than 10ppm)

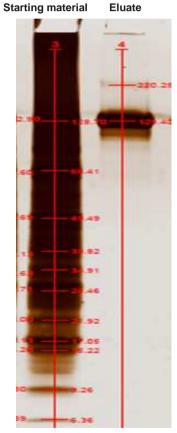
Elution: 50 mM EDTA pH 8

 \Rightarrow Capacity to eliminate very closely related impurities



Highly purified product by aptamo-purification Example of Factor H protein

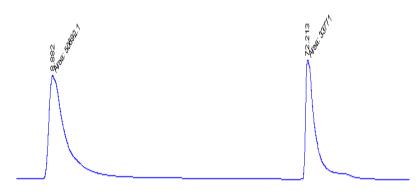
From pre-purified material


Plasmatic FH obtained after 4 chromatographic steps, including a pseudo affinity chromatography

SDS PAGE gel - Silver staining

Apparent molecular weights indicated

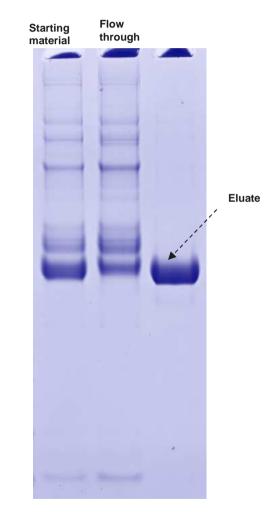
From **crude** material Recombinant FH in supernatant



➔ Highly purified FH product obtained in on single step (with 1M NaCl wash) from pre-purified or crude material

Highly purified product by aptamo-purification Example of coagulation Factor IX

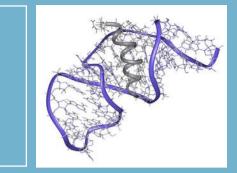
Anti-FIX aptamer Mapt 1 grafted - 1 mL resin

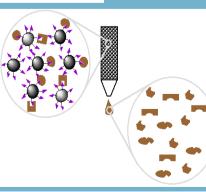


Material: Intermediate product containing 94 UI/mL of FIX

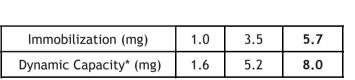
Equilibration buffer:

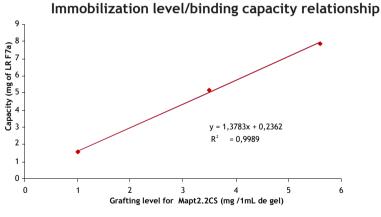
50 mM Tris-HCl (pH 7.4) 150 mM NaCl 2 mM CaCl₂ 1 mM MgCl₂


Elution: 200 mM EDTA (pH 8)


SDS PAGE gel - Blue staining

The path to Industriability: Grafting and resistance demonstration




On the path to Industriability: High grafting yield

A specific concern for this technology has been addressed through the use of a proprietary immobilization approach (efficient chemical grafting of an NH2-derivatized oligonucleotide on a classical support)

Quantity targeted in µg (for 1mL gel)	100	3500	6000
Quantity grafted in µg	≈100	3498	5556
Grafting yield (%)	100.0	100.0	92.6

*Capacity for a 50 KDa protein at 60 cm/H

 $\Rightarrow\,$ New grafting approach which provides a very high yield of immobilization

 \Rightarrow High efficiency (functionality/grafting)

PPB 2013

On the path to Industriability: Specific and sensitive detection assays

For most of affinity ligands, the development of a specific assay especially in the presence of the target remains a challenge

- Sensitivity required less than pg/mL
- Overcomes the probable complex formation with the target and/or the probable matrix effect by the concentrated target itself in the final product
- For aptamers different methods developed in the genomic and molecular biology fields can be adapted for this purpose
 - Highly sensitive methods available from molecular biology for DNA assay including a specific DNA extraction and/or target denaturation

On the path to Industriability : Resistance of the aptamo-affinity resin

Mapt 2 C11

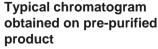
Specific activity

(FVIIam/FVIIAg)

0.9

0.9

ND


ND

As a model : chemically immobilized anti-FVII aptamers with inverted 3'T

 \Rightarrow 2 anti-FVII aptamers with 2 different spacers (hyrophobic C6 and hydrophilic C11) Parameters monitored:

- Capacity at 80% = 6.5-7.5 g/L (initial values)
- Specific activity of the eluted product : 0.8-1.0 (initial values)

	Résistance tested	Ма
100 100 100 100 100 100		Capacity 80%
460. 160.		g/L
100 Mp MD 100 100 100 100 100 100 100 10	100 Hours Sodium hydroxide 1 M	7.1
115 126 126 126 126 127 127 127 127 127 127 127 127 127 127	100 Hours in cryosupernatant	7.3
70 70 40 40 60 70 40 40	100 Hours in clarified milk	ND*
	+ 30 add. cycles buffer/ sodium hydroxyde 1M	ND
Typical chromatogram	*not determined	

 \Rightarrow Very high resistance of aptamer resin

Mapt 2,2 C6

Specific activity

0.9

ND

0.9

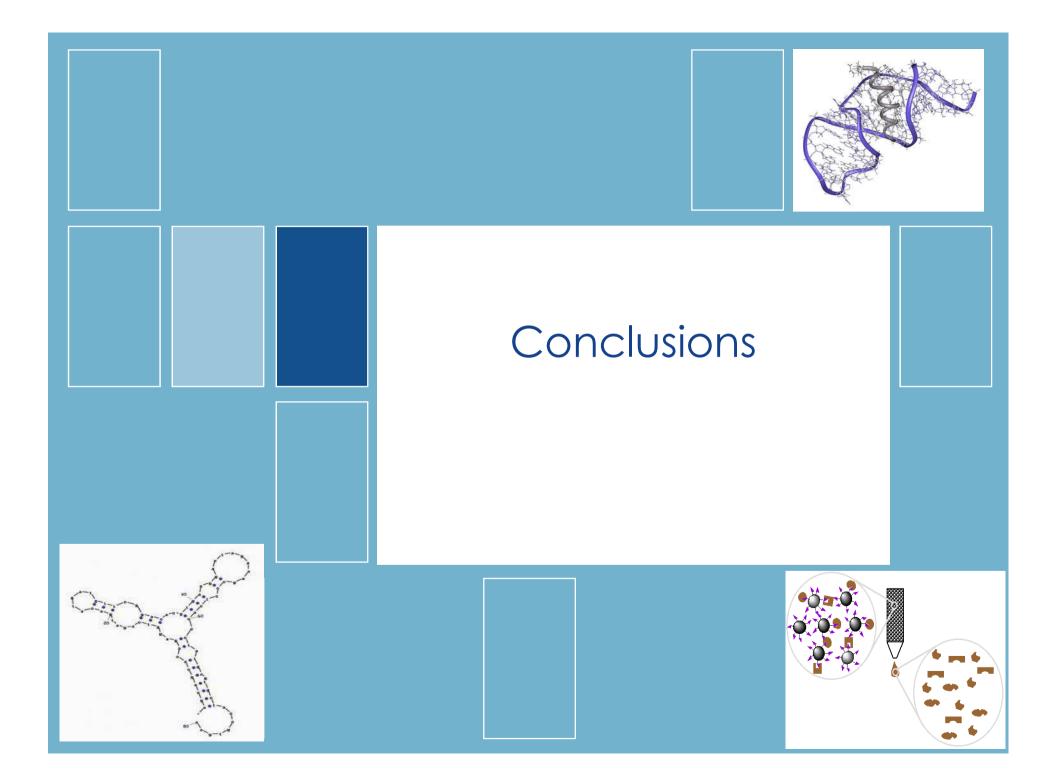
1.0

(FVIIam/FVIIAg)

Capacity 80%

g/L

6.9


ND

7.1

6.9

PPB 2013

A major interest for LFB : Aptapure®

- Most promising technology for improving yield and COGs of biotherapeutics including Plasma fractionation
 - 10 patents submitted
 - One major patent: original process for Aptamer immobilization
 - The last 3 years, investment made by LFB aimed at demonstrating :
 - High selectivity (vs contaminants, related-protein contaminants, homologous proteins)
 - Capacity to discriminate proteins with correct PTMs (i.e. complete γ-carboxylation for FIX)
 - High resistance: ultimate sanitization with 1M NaOH, compatibility with biological media (serum, milk)
 - High yield of immobilization using a specific chemistry on a classical support
 - High efficiency of immobilized aptamers
 - Very sensitive assay of residual aptamers in case of leakage
 - First positive feedback from EMA (Innovation Task Force)

Special Thanks

- Sami Chtourou, Patrick Santambien, Laurent Siret and Nicolas Bihoreau
- My team: Cynthia Forier, Agnès Cibiel, Clément Costa and Mohamed Ouhammouch
- Process team : Michel Nogré, Michel Tellier and Damien Bataille
- Egisto Boscheti (Jam Conseil) and Frédéric Ducongé (CEA)

Thank you for your attention !

