- 1) Термин $S_{N}2$ применяется для
 - А) Реакции сольватации
 - В) Реакции электрофильного присоединения
 - С) Реакции мономолекулярного нуклеофильного замещения
 - D) Реакции бимолекулярного нуклеофильного замещения
- 2) Какое положение удовлетворяет реакции бимолекулярного нуклеофильного замещения $S_N 2$ с участием алкилгалогенида?
 - A) Первый порядок по AlkX, нулевой порядок по нуклеофилу, нулевой общий порядок
 - B) Первый порядок по AlkX, первый порядок по нуклеофилу, нулевой общий порядок
 - C) Первый порядок по AlkX, первый порядок по нуклеофилу, первый общий порядок
 - D) Первый порядок по AlkX, первый порядок по нуклеофилу, второй общий порядок
 - E) Второй порядок по AlkX, нулевой порядок по нуклеофилу, второй общий порядок
- 3) Рассмотрите реакцию нуклеофильного замещения между метилбромидом и гидроксидом калия. Как изменится скорость реакции, если концентрации реагентов увеличить в 2 раза?
 - А) Изменений не будет
 - В) Скорость увеличится в 2 раза
 - С) Скорость увеличится в 4 раза
 - D) Скорость увеличится в 8 раз
 - Е) Скорость увеличится в 16 раз
- 4) Геометрией переходного состояния в S_N2 реакции является
 - А) Планарная тригональная
 - В) Тетраэдрическая
 - С) Пентагональная
 - D) Тригональная бипирамидальная
 - Е) Октаэдрическая

- 5) В $S_N 2$ реакции нуклеофил подходит к акилгалогениду
 - А) Все равно, как
 - В) Со стороны связи углерод-галоген
 - С) Со стороны, обратной связи углерод-галоген
- 6) Рассмотрите механизм реакции трет-бутилхлорида с иодид-ионом.

$$(CH_3)_3C$$
— $Cl + I^{\Theta}$ \longrightarrow $(CH_3)_3C$ — $I + Cl^{\Theta}$

Выберите правильный ответ на следующий вопрос: если концентрацию иодид-иона удвоить, то скорость образования *тем*-бутилиодида.

- (А) Увеличится в 2 раза
- (В) Увеличится в 4 раза
- (С) Останется той же самой
- (D) Уменьшится
- (Е) Ни один из этих ответов
- 7) Какие из следующих соединений **не вступают** в реакции S_N1 и S_N2 **нуклеофильного** замещения?

$$CH_2$$
= CH - CH_2Br
 A
 B
 C
 CH_2 = CH - CH_2Br
 C
 CH_2Br
 CH_2Br
 CH_2Br
 CH_2Br
 CH_2Br
 CH_2Br
 CH_2Br

8) Укажите, по какому механизму (S_N1 или S_N2) могут реагировать приведенные галогениды. Расположите следующие алкилгалогениды в ряд по реакционной способности в реакции S_N1 .

- 9) Расположите в ряд по увеличению реакционной способности при сольволизе в 80% HCOOH следующие хлориды: дифенилхлорметан, *трет*-бутилхлорид, бензилхлорид, трифенилхлорметан.
- 10) Какое утверждение об эффектах растворителей в реакциях нуклеофильного замещения является неверным?
 - A) $S_N 1$ реакциям благоприятствуют полярные растворители с высокой проницаемостью ϵ
 - B) $S_N 2$ реакциям благоприятствуют полярные апротонные растворители
 - С) Первичные алкилгалогениды все же реагируют в S_N2 реакциях в полярных растворителях с высокой ϵ
 - D) Третичные алкилгалогениды все же реагируют в S_N1 реакциях в неполярных растворителях
 - E) На стереоселективность реакций с участием вторичных алкилгалогенидов не может влиять растворитель